Molecular Electronic Structure Group

Bookmark this to keep an eye on our project updates!

geem-lab.github.io

Scientific Publications

2023 - 2027

2018 - 2022

  1. Analysis of the host–guest complex formation involving bridged hexameric pyridinium–phenyl rings in the HexaCage6+ host in suit[3]ane: insights from dispersion-corrected DFT calculations for a nanometric mechanically interlocked device, Parreira, R. L. T.; Caramori, G. F.; Madureira, L. M. P.; Guajardo-Maturana, R.; Rodríguez-Kessler, P. L.; Muñoz-Castro, A. J. Nanostruct. Chem. 2022, 12, 1143-1154.

  2. Development, structural, spectroscopic and in silico investigation of new complexes relevant as anti-toxoplasma metallopharmacs, Cardoso, A. P.; Madureira, L. M. P.; Segat, B. B.; Menezes, J. N. Cargnelutti, R.; Candela, D. R.S.; Mariano, D. L.; Parreira, R. L. T.; Horn Jr, A.; Seabra, S. H.; DaMatta,R. A.; Moreira, F. F.; Moreira, R. V.; Caramori, G. F.; Fernandes, C. J. Mol. Struct. 2022, 1265, 133380.

  3. Analysis of structural, optical, electronic and transport properties in undoped, hydrogenated, doped and rotated pentahexoctite systems, Ferreira, D. F. S.; Moreira, M. M.; Silva, A. S.; Madureira, L. M. P.; Beirão, A. T. M.; Miranda, I. R. S.; Silva Jr., C. A. B.; Caramori, G. F.; Del Nero, J. Phys. E: Low-Dimens. Syst. Nanostructures 2022, 144, 115468.

  4. Reverse solvatochromism in a family of probes having 2,6–di–tert–butylphenolate as electron–donor and 4–nitrophenyl as electron–acceptor groups, Melo, C. E. A.; Nicoleti, C. R.; Ferreira, M.; Santos, M. C.; Kreuz, A.; Schneider, F. S. S.; Oliboni, R. S.; Caramori, G. F.; Machado, V. G. Dyes Pigm. 2022, 203, 110376.

  5. Nature of hydride and halide encapsulation in Ag8 cages: insights from the structure and interaction energy of [Ag8(X){S2P(OiPr)2}6]+ (X = H−, F−, Cl−, Br−, I−) from relativistic DFT calculations, Maturana, R. G.; Ortolan, A. O.; Rodríguez-Kessler, P. L.; Caramori, G. F.; Parreira, R. L. T.; Muñoz-Castro, A. Phys. Chem. Chem. Phys. 2022, 24, 452-458.

  6. Janusene as a silver ion scavenger: insights from computation, Colaço, M. C.; Caramori, G. F.; Parreira, R. L. T.; Laali, K. K. N. J. Chem. 2022, 46, 2393-2404.

  7. Box-Shaped Hosts: Evaluation of the Interaction Nature and Host Characteristics of ExBox Derivatives in Host-Guest Complexes from Computational Methods, Caramori, G. F.; Muñoz-Castro, A. (2021) In Chemical Reactivity in Confined Systems (eds P.K. Chattaraj and D. Chakraborty).

  8. Supersaturating drug delivery systems containing fixed-dose combination of two antihypertensive drugs: Formulation, in vitro evaluation and molecular metadynamics simulations, Pinto, J. M. O.; Leão, A. F.; Bazzo, G. C.; Mendes, C.; Madureira, L. M. P.; Caramori, G. F.; Parreira, R. L. T.; Stulzer, H. K. Eur. J. Pharm. Sci. 2021, 163, 105860.

  9. Designing boron and metal complexes for fluoride recognition: a computational perspective, Orenha, R. P.; Peixoto, L. B.; Caramori, G. F.; Piotrowski, M. J.; Batista, K. E. A.; Contreras-Garcia, J.; Cardenas, C.; Morgon, N. H.; Mendizabal, F.; Parreira, R. L. T. Phys. Chem. Chem. Phys. 2021, 23, 22768-22778.

  10. Design of supramolecular systems capable of recognizing anions uniquely by aliphatic C–H⋯anion hydrogen bonds: theoretical insights, Orenha, R. P.; Cintra, C. H.; Natal, M. L. L.; Colaço, M. C.; Caramori, G. F.; Piotrowski, M. J.; Parreira, R. L. T. New J. Chem. 2021, 45, 19584-19592.

  11. Probing the potential of ureasil-poly(ethylene oxide) as a glyphosate scavenger in aqueous milieu: force-field parameterization and MD simulations, Misturini, A.; Heinzelmann, G.; Parreira, R. L. T.; Molina, E. F.; Caramori, G. F. New J. Chem. 2021, 45, 19831-19841.

  12. Designing boron and metal complexes for fluoride recognition: a computational perspective, Orenha, R. P.; Peixoto, L. B.; Caramori, G. F.; Piotorwski, M. J.; Batista, K. E. A.; Contreras-Garcia, J.; Cardenas, C.; Morgon, N. H.; Mendizabal, F.; Parreira, R. L. T. Phys. Chem. Chem. Phys. 2021, 23, 22768-22778.

  13. Development of new dinuclear Fe(III) coordination compounds with in vitro nanomolar antitrypanosomal activity, Moreira, F. F.; Portes, J. A.; Azeredo, N. F. B.; Fernandes, C.; Horn, A.; Santiago, C. P.; Segat, B. B.; Caramori, G. F.; Madureira, L. M. P.; Candela, D. R. S., Marques, M. M.; Resende, J. A. L. C.; de Souza, W.; DaMatta, R. A.; Seabra, S. H. Dalton Trans, 2021, 50, 12242-12264

  14. Can the relative positions (cis–trans) of ligands really modulate the coordination of NO in ruthenium nitrosyl complexes?, Orenha, R. P.; Silva, G. C. G.; Morgon, N. H.; Caramori, G. F.; Parreira, R. L. T. New J. Chem. 2021,45, 1658-1666

  15. The design of anion–π interactions and hydrogen bonds for the recognition of chloride, bromide and nitrate anions, Orenha, R. P.; da Silva,V. B.; Caramori, G. F.; Piotrowski, M. J.; Nagurniak, G. R.; Parreira, R. L. T. Phys. Chem. Chem. Phys 2021, 23, 11455-11465

  16. The π-donor/acceptor trans effect on NO release in ruthenium nitrosyl complexes: a computational insight, Orenha, R. P.; Morgon, N. H.; Silva, G. C. G.; Caramori, G. F.; Parreira, R. L. T. New. J. Chem. 2021, 45, 8949-8957

  17. Tracking the Role of trans–Ligands on Ruthenium–NO Bond Lability: A Computational Insight, Orenha, R. P.; Silva, G. C. G.; Batista, A. P. L.; de Oliveira-Filho, A. G. S.; Morgon, N. H.; Silva, V. B.; Furtado, S. S.P.; Caramori, G. F.; Piotrowski,M. J.; Parreira, R. L. T. New J. Chem. 2020, 44, 11448-11456.

  18. Theoretical study of chloride complexes with hybrid macrocycles, Silva, E. H.; Orenha, R. P.; Muñoz-Castro, A.; Caramori, G. F.; Colaço, M. C.; Silva, G. C. G.; Parreira, R. L. T. New J. Chem. 2021, 45, 463-470.

  19. The simultaneous recognition mechanism of cations and anions using macrocyclic–iodine structures: insights from dispersion-corrected DFT calculations, Orenha,R. P.; Nagurniak, G. R.; Colaço, M. C.; Caramori, G. F.; Piotrowski, M. J.; Batista, K. E. A. B.; Muñoz-Castro, A.; Silva, B. A.; Esteves, B. J.; Parreira, R. L. T. Phys. Chem. Chem. Phys. 2020, 22, 23795-23803.

  20. On the recognition of chloride, bromide and nitrate anions by anthracene–squaramide conjugated compounds: a computational perspective, Orenha, R. P.; da Silva, V. B.; Caramori, G. F.; Schneider, F. S. S.; Piotrowski, M. J.; Contreras-Garcia, J.; Cardenas, C.; Gonçalves, M. B.; Mendizabal, F.; Parreira, R. L. T. New J. Chem. 2020,44, 17831-17839.

  21. The usefulness of energy decomposition schemes to rationalize host–guest interactions, Caramori, G. F.; Østrøm, I.; Ortolan, A. O.; Nagurniak, G. R.; Besen, V. M.; Muñoz-Castro, A.; Orenha, R. P.; Parreira, R. L. T.; Galembeck, S. E. Dalton Trans. 2020, 49, 17457-17471.

  22. The bonding situation in heteromultimetallic carbonyl complexes, Ortolan, A. O.; Caramori, G. F.; Parreira, R. L. T.; Orenha, R. P.; Muñoz-Castro, A.; Frenking, G. Dalton Trans. 2020, 49, 16762-16771.

  23. Kinetics and adsorption calculations: Insights into the MgO-catalyzed detoxification of simulants of organophosphorus biocides, Almerindo, G. I.; Buratto, S. C.; Wanderlind, E. H.; Nicolazi, L. M.; Sangaletti, P.; Medeiros, M.; Schneider, F. S. S.; Caramori, G. F.; Parreira, R. L. T.; Micke, G. A.; Fiedler, H. D.; Nome, F. J. Mater. Chem. A 2020, 8, 19011-19021.

  24. In Silico Design of Cylindrophanes: The Role of Functional Groups in a Fluoride Selective Host, Østrøm, I.; Ortolan, A. O.; Caramori, G. F.; Mascal, M.; Muñoz‐Castro, A.; Parreira, R. L. T. Chem. Phys. Chem. 2020, 21, 1989-2005.

  25. Are DFT Methods Able to Predict Reduction Potentials of Ruthenium Nitrosyl Complexes Accurately? Coimbra, D. F.; Cintra, C. H.; Lourenço, L. C. L.; Parreira, R. L. T.; Orenha, R. P.; Caramori, G. F. J. Phys. Chem. A 2020, 124, 6186–6192.

  26. Tracking the role of trans-ligands in ruthenium–NO bond lability, Orenha, R. P.; Silva, G. C. G.; Batista, A. P. L.; , de Oliveira-Filho, A. G. S.; Morgon, N. H.; da Silva, V. B.; Furtado, S. S. P.; Caramori, G. F.; Piotrowski, M. J.; Parreira, R. L. T. New J. Chem. 2020, 44, 11448-11456.

  27. Coordination among Bond Formation/Cleavage in a Bifunctional-Catalyzed Fast Amide Hydrolysis: Evidence for an Optimized Intramolecular N-Protonation Event, Scorsin, L.; Affeldt, R. F.; Oliveira, B. S.; Silveira, E. V.; Ferraz, M. S.; de Souza, F. P. S.; Caramori, G. F.; Menger, F. M.; Souza, B. S.; Nome, F. J. Org. Chem. 2020, 85, 4663–4671.

  28. Synthesis, Characterization and Photoinduced CO-Release by Manganese(I) Complexes, Amorim, A. L.; Guerreiro, A.; Glitz, V. A.; Coimbra, D. F.; Bortoluzzi, A. J.; Caramori, G. F.; Braga, A. L.;Neves, A.; Bernardes, G. J. L.; Peralta, R. A. New J. Chem. 2020, 44, 10892-10901.

  29. Platinum-triggered Bond-cleavage of Pentynoyl amide and N-propargyl handles for Drug-Activation, Oliveira, B. L.; Stenton, B. J.; Unnikrishnan, V. B.; de Almeida, C. R.; Conde, J.; Negrão, M.; Schneider, F. S. S.; Cordeiro, C.; Ferreira, M. G.; Caramori, G. F.; Domingos, J. B.; Fior, R.; Bernardes, G. J. L. J. Am. Chem. Soc. 2020, 142, 10869-10880 (Front Cover).

  30. Coordination among Bond Formation/Cleavage in a Bifunctional-Catalyzed Fast Amide Hydrolysis: Evidence for an Optimized Intramolecular N-Protonation Event, Scorsin, L.; Affeldt, R. F.; Oliveira, B. S.; Silveira, E. V.; Ferraz, M. S.; de Souza, F. P. S.; Caramori, G. F.; Menger, F. M.; Souza, B. S.; Nome, F. J. Org. Chem. 2020, 85, 4663-4671.

  31. Solvatochromism of new substituted 4-[(E)-(4-nitrophenyl)diazenyl]phenolate dyes, de Melo, C. E. A.; Nicoleti, C. R.; Nandi, L. G.; Schneider, F. S. S.; Oliboni, R. S.; Caramori, G. F.; Machado, V. G. J. Mol. Liq. 2020, 301, 112330.

  32. The anionic recognition mechanism based on polyol and boronic acid receptors, Orenha, R. P.; Cintra, C. H.; Peixoto, L. B.; da Silva, E. H.; Caramori, G. F.; Ortolan, A. O.; Piotrowski, M. J.; Parreira, R. L. T. New J. Chem. 2020, 44, 5564-5571.

  33. Shedding light on the bonding situation of triangular and square heterometallic clusters: computational insight, Coimbra, D. F.; Ortolan, A. O.; Orenha, R. P.; da Silva, V. B.; Parreira, R. L. T.; Caramori, G. F. New J. Chem. 2020, 44, 5079-5087.

  34. How does the acidic milieu interfere in the capability of ruthenium nitrosyl complexes to release nitric oxide?, Orenha, R. P.; Morgon, N. H.,; Contreras-García, J.; Silva, G. C. G.; Nagurniak, G. R.; Piotrowski, M. J.; Caramori, G. F.; Muñoz-Castro, A.; Parreira, R. L. T. New J. Chem. 2020, 44, 773-779.

  35. What is the driving force behind molecular triangles and their guests? A quantum chemical perspective about host–guest interactions, Nagurniak, G. R.; Piotrowski, M. J.; Muñoz-Castro, A.; Cascaldi, J. B. S.; Parreira, R. L. T.; Caramori, G. F. Phys. Chem. Chem. Phys. 2020, 22, 19213-19222.

  36. A ruthenium nitrosyl cyclam complex with appended anthracenyl fluorophore, Gois,R. G. S.; Boffo, E. F.; Toledo-Júnior, J. C.; Andriani, K. F.; Caramori, G. F.; Gomes, A. J.; Doro, F. G. Polyhedron, 2019, 173, 114117.

  37. ESI‐QTof‐MS characterization of hirsutinolide and glaucolide sesquiterpene lactones: Fragmentation mechanisms and differentiation based on Na+/H+ adducts interactions in complex mixture, da Silva, L. A. L.; Sandjo, L. P.; Misturini, A.; Caramori, G. F.; Biavatti, M. W. J. Mass Spectrom. 2019, 54, 915-932.

  38. Understanding the interplay between π–π and cation–π interactions in [janusene–Ag]+, Mucelini, J.; Østrøm, I.; ortolan, A. O.; Andriani, K. F.; Caramori, G. F.; Parreira, R. L. T.; Laali, K. K. Dalton Trans. *2019, 48, 13281-13292.

2013 - 2017

  1. How the Electron-Deficient Cavity of Heterocalixarenes Recognizes Anions. Insights from Computation, Ortolan, A. O.; Caramori, G. F.; Bickelhaupt, F. M.; Parreira, R. L. T.; Muñoz-Castro, A.; Kar, T. Phys. Chem. Chem. Phys. 2017, 19, 24696-24705.

  2. Metal-Ligand Bonding Situation in Ruthenophanes Containing Multibridged Cyclophanes, Galembeck, S. E.; Caramori, G. F.; Misturini, A.; Garcia, L. C.; Orenha, R. P. Organometallics, 2017, 36, 3465–3470.

  3. In vivo and in silico anti-inflammatory mechanism of action of the semisynthetic (-)-cubebin derivatives (-)-honokinin and (-)-O-benzylcubebin, Lima, T. C.; Lucarini, R.; Volpe, A. C.; De Andrade, C. Q.; Souza, A. M.; Pauletti, P. M.; Januario, A. H.; Simaro, G. V.; Bastos, J. K.; Cunha, W. R.; Borges, A.; Laurentiz, R. S.; Conforti. V. A.; Parreira, R. L. T.; Borges, C. H.; Caramori, G. F.; Andriani, K. F. Bioorg. Med. Chem. Lett. 2017, 27, 176-179.

  4. Metal-Ligand Bonding situation in Ruthenophanes containing i,j-xylylene-linked-bis(NHC)cyclophane Ligands, Ortolan, A. O.; Caramori, G. F.; Garcia, L. C.; Parreira, R. L. T.; Bento, M, V. B. J. Organomet. Chem. 2017, 830, 100-108.

  5. Solvation Enhances the Distinction between Carboxylated Armchair and Zigzag Single-wall Carbon Nanotubes (SWNT-COOH), Kar, T.; Adhikari, U.; Scheiner, S.; Roy, A. K.; Parreira, R. L. T.; Bergamo, P. A. S.; Caramori, G. F.; Schneider, F.S. S. J. Phys. Chem. C 2017, 121, 9516-9527.

  6. Electronic Properties and Metal-ligand Bonding Situation in Eu(III) Complexes Containing Tris(pyrazolyl)borate and Phenantroline Ligands, Parreira, R. l. T.; Nassar, E. J.; Silva, E. H.; Rocha, L. A.; Bergamo, P. A. S.; Ferreira, C. M. A.; Kar, T.; Fonseca, D. E. P; Coimbra, D. F.; Caramori, G. F. J. Luminescence 2017, 182, 137-145.

  7. Removal of the emerging contaminant bisphenol A by an ureasil–PEO hybrid membrane: experimental study and molecular dynamic simulation, de Oliveira, L. K.; Alves, A. L. A.; Barbosa, V.; Parreira, R. L. T.; Banegas, R. S.; Caramori, G. F.; Ciuffi, K. J.; Molina, E. F. Environ Sci Pollut Res 2017, 24, 18421–18433.

  8. An Evaluation of Electron Donation as a Mechanism of the Stabilization of Chalcogenated-Protected Nanoclusters, Segala, M.; Schneider, F. S. S.; Caramori, G. F.; Parreira, R. L. T. ChemPhysChem 2016, 17, 3102-3111.

  9. Shedding Light on the Nature of Host-Guest Interactions in PAHs-ExBox4+ Complexes, Nagurniak, G. R.; Caramori, G. F.; Parreira, R. L. T.; Bergamo, P. A. S.; Frenking, G.; Muñoz-Castro, A. J. Phys. Chem. C 2016, 120, 15480-15487

  10. Copaifera duckei Oleoresin and Its Main non Volatile Terpenes: In vitro Schistosomicidal Properties, Borges, C.; Cruz, M.; Carneiro, L.; da Silva, J.; Bastos, J.; Tavares, D.; Roges, H.; Rodrigues, V.; Veneziani, R.; Parreira, R. L. T.; Caramori, G. F.; Nagurniak, G.; Magalhães, L.; Ambrósio, S. R. J. J. Chem. Biodiv. 2016, 13, 1348-1356.

  11. Bonding Analysis in Homo- and Hetero-Trihalides Species: A Charge Displacement Study, Ciancaleoni, G.; Arca, M.; Caramori, G. F.; Frenking, G.; Schneider, F. S. S.; Lippolis, V. Eur. J. Inorg. Chem. 2016, 2016, 3804-3812.

  12. Transport Properties of Ruthenophanes – A Theoretical Insight, Garcia, L. C.; Caramori, G. F.; Bergamo, P. A. S.; Parreira, R. L. T. Chem. Phys. 2016, 478, 23-33.

  13. Polar Order and Symmetry Breaking between Bent-Core and Rodlike Molecular Forms: When 4-Cyanoresorcinol Meets Carbosilane End Group, Westphal, E.; Gallardo, H.; Caramori, G. F.; Sebástian, N.; Tamba, M. G.; Eremin, A.; Kawauchi, S.; Prehm, M.; Tschierske, C. Chem. Eur. J. 2016, 22, 1-18.

  14. Hydrazine Decomposition on a Small Platinum Cluster: The Role of N2H5 Intermediate, Pelegrini, M.; Parreira, R. L. T.; Ferrão, L. F. A.; Caramori, G. F.; Ortolan, A. O.; da Silva, E. H.; Roberto-Neto, O.; Rocco, J. A. F. F.; Machado, F. B. C. Theor. Chem. Acc. 2016, 135, 1-12.

  15. A Ruthenium Polypyridyl Complex with the Antihypertensive Drug Varsatan: Synthesis, Theoretical Calculations, and Interaction Studies with Human Serum Albumin, Oliveira, R. S.; Boffo, E. F.; Reis, F. C. C.; Nikolau, S.; Andriani, K. F.; Caramori, G. F.; Doro, F. G. Polyhedron 2016, 114, 232-241.

  16. The Versatile Ruthenium(II/III) Tetraazamacrocycle complexes and their Nitrosyl Derivatives, Doro, F. G.; Ferreira, K. Q.; da Rocha, Z. N.; Caramori, G. F.; Gomes, A. J.; Tfouni, E. Coord. Chem. Rev. 2016, 306, 652-677.

  17. Role of the Cation Formal Charge into Cation–π interaction. A Survey Involving the [2.2.2]Paracyclophane Host from Relativistic DFT Calculations, Ortolan, A. O.; Caramori, G. F.; Frenking, G.; Muñoz-Castro, A. New J. Chem. 2015, 39, 9963-9968.

  18. Ruthenium Nitrosyl Complexes Containing Pyridine-functionalized carbenes – A Theoretical Insight, Caramori, G. F.; Ortolan, A. O.; Parreira, R. L. T.; da Silva, E. H. J. Organomet. Chem. 2015, 799-800, 54-60.

  19. The influence of L ligands on the {RuNO}6/7 bonding situation in cis-[Ru(NO)(NO2)L1–4]^q complexes: a theoretical insight, Andriani, K. F.; Caramori, G. F.; Muñoz-Castro, A.; Doro, F. G. RSC Adv. 2015, 5, 69057-69066.

  20. Synthesis and Solvatochromism of Substituted 4-(Nitrostyryl)phenolate Dyes, Stock, R.; Nandi, L.; Nicoleti, C.; Schramm, A.; Meller, S.; Heying, R.; Coimbra, D. F.; Andriani, K. F.; Caramori, G. F.; Bortoluzzi, A.; Machado, V. G. J. Org. Chem. 2015, 80, 7971-7983.

  21. *No Need for a Re-examination of the Electrostatic Notation of the H-Bonding, Frenking, G.; Caramori, G. F. Angew. Chem. Int. Ed. 2015, 54, 2596-2599.

  22. No Need for a Re-examination of the Electrostatic Notation of the H-Bonding, Frenking, G.; Caramori, G. F. Angew. Chem. 2015, 127, 2632-2635.

  23. *[2.2.2]Paracyclophane, preference for η6 or η18 coordination mode including Ag(I) and Sn(II): a survey into the cation–π interaction nature through relativistic DFT calculations, Ulloa, C. O.; Ponce-Vargas, M.; Piccoli, R. M.; Caramori, G. F.; Muñoz-Castro, A. RSC Adv. 2015, 5, 7803-7811.

  24. Cyclic Trinuclear copper(I), silver(I), and gold(I) complexes: A Theoretical Insight, Caramori, G. F.; Piccoli, R. M.; Segala, M.; Muñoz-Castro, A.; Guajaro-Maturana, R.; Andrada, D. M.; Frenking, G. Dalton Trans. 2015, 44, 377-385.

  25. Proton-induced generation of remote N-heterocyclic carbene-Ru complexes, Fukushima, T.; Fukuda, R.; Kobayashi, K.; Caramori, G. F.; Frenking, G.; Ehara, M. Tanaka, K. Chem. Eur. J. 2015, 21, 106-110.

  26. Strontium Mono-Chloride – A New Molecule for the Determination of Chlorine Using High-resolution Graphite Furnace, Molecular Absorption Spectrometry and Direct Solid Sample Analysis, Pereira, E. R.; Welz, B.; Lopez, A. H. D.; De Gois, J.; Caramori, G. F.; Borges, D. L. G.; Carasek, E. de Andrade, J. B. Spectrochim. Acta B 2014, 102, 1-6.

  27. Ruthenium(II) complexes of N-heterocyclic carbenes derived from imidazolium-linked cyclophanes, Caramori, G.; Garcia, L. C.; Andrada, D. M.; Frenking, G. Dalton Trans. 2014, 43, 14710-14719.

  28. Ruthenophanes: Evaluating cation-π interactions in [Ru(η6-C16H12R4)(NH3)3]2+/3+ Complexes. A Computational Insight, Caramori, G. F.; Garcia, L. C.; Andrada, D. M.; Frenking, G. Organometallics 2014, 33, 2301-2312.

  29. Ruthenium(II)/4,6-dimethyl-2-mercaptopyrimidine complexes: Synthesis, characterization, X-ray structures and in vitro cytotoxicity activities on cancer cell lines, Mondeli, M. A.; Graminha, A. E.; Corrêa, R. S.; da Silva, M. M.; Carnizelo, A. P.; von Poelhsitz, G.; Ellena, J.; Deflon, V. M.; Caramori, G. F.; Torre, M. H.; Tavares. D. C.; Batista, A. A. Polyhedron 2014, 68, 312-318.

  30. Ureasil-Poly(ethylene oxide) Hybrid Matrix for Selective Adsorption and Separation of Dyes from Water, Molina, E.; Parreira, R. L. T.; de Faria, E.; Carvalho, H.; Caramori, G. F.; Coimbra, D. F.; Nassar, E.; Ciuffi, K. Langmuir 2014, 30, 3857-3868.

  31. Spectroscopy and Theoretical Studies of Natural Melanin (eumelanin), and its Complexation by Iron(III), Szpoganicz, B.; Caramori, G. F.; et. all.Inorg. Chim. Acta 2014, 67, 986-1001.

  32. Ru–NO and Ru–NO2 Bonding Linkage Isomerism in cis-[Ru(NO)(NO)(bpy)2]2+/+ Complexes – A Theoretical Insight, Andriani, K. F.; Caramori, G. F.; Doro, F. G.; Tfouni, E. Dalton Trans. 2014, 43, 8792-8804.

  33. The Two Faces of Hydrogen-Bond Strength on Triple AAA-DDD Arrays, Lopez, A. H. D.; Caramori, G. F.; Coimbra, D. F.; Parreira, R. L. T. Chem.Phys.Chem. 2013, 14, 3994-4001.

  34. Polyacetylenes from the Leaves of Vernonia Scorpioides (Asteraceae) and Their Antiherpetic Activities, Pollo, L.; Bosi, C.; Leite, A.; Rigotto, C.; Simoes, C.; Fonseca, D. E. P.; Coimbra, D. F.; Caramori, G. F.; Nepel, A.; Campos, F.; Barison, A.; Biavatti, M. Phytochemistry 2013, 95, 375-383.

  35. The Ru-NO Bonding in Nitrosyl-[poly(1-pyrazolyl)borate]ruthenium Complexes – A Theoretical Insight Based on Su-Li EDA, Caramori, G. F.; Kunitz, A. G.; Coimbra, D. F.; Garcia, L. C.; Fonseca, D. E. P. J. Braz. Chem. Soc. 2013, 24, 1487-1496.

  36. Investigating the Ritter-type Reaction of α-Methylene-β-hydroxy Esters in Acidic Medium: Evidence for the Intermediacy of an Allylic Carbenium, Sá, M. M.; Ferreira, M.; Caramori, G. F.; Zaramello, L.; Bortoluzzi, A. J.; Faggion Jr. D.; Domingos, J. B. Eur. J. Org. Chem. 2013, 5180-5187.

  37. Synthetic Pathway for a New Series of Liquid Crystal 2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole, Gallardo, H.; Santos, D. M. P. O.; Caramori, G. F.; Molin, F.; Bechtold, I. H. Liq. Cryst. 2013, 40, 570-580.

  38. Peculiar Reactivity of a Di-imine Copper(II) Complex Regarding its Binding to Albumin Protein, Silveira, V. C.; Abbott, M. P.; Cavicchioli, M.; Golçalves, M. B.; Petrilli, H. M.; de Rezende, L.; Amaral, A. T.; Fonseca, D. E. P.; Caramori, G. F.; Ferreira, A. M. D. C. Dalton Trans. 2013, 42, 6386-6396.

  39. Nanoparticle Translocation through a Lipid Bilayer Tuned by Surface Chemistry, Rocha, E. L.; Caramori, G. F.; Rambo, C. R. Phys. Chem. Chem. Phys. 2013,15, 2282-2290. (Front Cover).

2008 - 2012

  1. Hydrogen Bonds and the Resonance Effect on the Formamide-Water Complexes, Parreira, R. L. T.; Caramori, G. F.; Morgon, N. H.; Galembeck, S. E. Int. J. Quantum Chem. 2012, 112, 1401-1420.

  2. Isatin-Schiff Base Copper(II) Complexes – A DFT Study of the Metal-Ligand Bonding Situation, Caramori, G. F.; Parreira, R. L. T.; Ferreira, A. M. C. D. Int. J. Quantum Chem. 2012, 112, 625-646.

  3. Nitro-Substituted 4-[(phenylmethylene)imino]phenolates: Solvatochromism and Their Use as Solvatochromic Switches and as Probes for the Investigation of Preferential Solvent in Solvent Mixtures, Nandi, L. G.; Facin, F.; Marini, V. G.; Zimmermann, L. M.; Giusti, L. A.; da Silva, R.; Caramori, G. F.; Machado, V. G. J. Org. Chem. 2012, 77, 10668-10679.

  4. The Nature of Ru-NO Bonds in Ruthenium Tetraazamacrocycle Nitrosyl Complexes – A Computational Study, Caramori, G. F.; Kunitz, A. G.; Doro, F.G.; Andriani, K. F.; Frenking, G.; Tfouni. E. Dalton Trans. 2012, 41, 7327-7339.

  5. Quinolinyl and quinolinyl N-oxide chalcones: Synthesis, antifungal and cytotoxic activities, Tavares, L. T.; Johann, S.; Alves, T. M. A.; Guerra, J. C.; Souza-Fagundes, E. M.; Cisalpino, P. S.; Bortoluzzi, A. J.; Caramori, G. F.; Piccoli, R. M.; Braibante, H. T. S.; Braibante, M. E. F.; Pizzolatti, M. G. Eur. J. Med. Chem. 2011, 46, 4448-4456.

  6. Interactions of Di-Imine Copper(II) Complexes with Albumin: Competitive Equilibria, Promoted Oxidative Damage and DFT Studies, Azzellini, M. A. A.; Abbott, M. P.; Machado, A.; Miranda, M. T. M.; Garcia, L. C.; Caramori, G. F.; Goncalves, M. B.; Petrilli, H.; Ferreira, A. M. D. C. J. Braz. Chem. Soc. 2010, 21, 1303-1317.

  7. Sesquiterpene Lactones from Vernonia Scorpioides and Their in Vitro Cytotoxixity, Buskuhl, H.; de Oliveira, F. L.; Blind, L. Z.; de Freitas, R. A.; Barison, A.; Campos, F. R.; Corilo, Y. E.; Eberlin, M. N.; Caramori, G. F.; Biavatti, M. W. Phytochemistry 2010, 71, 1539-1544.

  8. The Effects of N-Heterocyclic Ligands on the Nature of Ru-NO Bond in Ruthenium Tetraammine Nitrosyl Complexes, Caramori, G. F.; Frenking, G. Croat. Chem. Acta 2009, 82, 219-232.

  9. Oxindole-Schiff Base Copper(II) Complexes Interactions with Human Serum Albumin: Spectroscopic, Oxidative Damage, and Computational Studies, Silveira, V. C.; Caramori, G. F.; Abbott, M. P.; Gonçalves, M. B.; Petrilli, H.; Ferreira, A. M. C. D. J. Inorg. Biochem. 2009, 103, 1331-1341.

  10. Aromaticidade Evolução Histórica do Conceito e Critérios Quantitativos, Caramori, G. F.; Oliveira, K. T. Química Nova 2009, 32, 1871-1884. (Front Cover).

  11. Analysis of the Metal-Ligand Bond in [Mo(X)(NH2)3] (X= P, PO, and NO), [Mo(CO)5(NO)]+, and [Mo(CO)5(PO)]+, Caramori, G. F.; Frenking. G. Theor. Chem. Acc. 2008, 120, 351-361.

  12. The Nature of the Interactions between Pt4 Cluster and the Adsorbates •H, •OH, and H2O, Parreira, R. L. T.; Caramori, G. F.; Galembeck, S. E.; Huguenin, F. J. Phys. Chem. A. 2008, 112, 11731-11743.

  13. A Computational Study of Tetrafluoro-[2.2]Cyclophanes, Caramori, G. F.; Galembeck, S. E. J. Phys. Chem. A. 2008, 112, 11784-11800.

2003 - 2007

  1. Computational Study about Through-bond and Through-space Interactions in [2.2]Cyclophanes, Caramori, G. F.; Galembeck, S. E. J. Phys. Chem. A 2007, 111, 1705-1712.

  2. Aromaticity in Methano[10]annulenes, Caramori, G. F.; Oliveira, K. T.; Galembeck, S. E.; Bultinck, P.; Constantino, M. G. J. Org. Chem. 2007, 72, 76-85.

  3. The Nature of Ru-NO Bond in Ruthenium Tetraammine Nitrosyl Complexes, Caramori, G. F.; Frenking, G. Organometallics 2007, 26, 5815-5825.

  4. Efeitos de Substituintes na Ligação de Hidrogênio do 3-hidroxi-propenal, Rustici, V. C. F.; Caramori, G. F.; Galembeck, S. E. Química Nova 2005, 29, 1187-1192.

  5. New Exploration of the Torsional Energy Surface of n-Pentane using Molecular Modeling Software, Galembeck, S. E.; Caramori, G. F.; Romero, J. R. J. Chem. Edu. 2005, 82, 1800-1805.

  6. A Computational Study of [2.2]Cyclophanes, Caramori, G. F.; Galembeck, S. E.; Laali, K. K. J. Org. Chem. 2005, 70, 3242-3250.

  7. Qual o Sítio de Reação? Um experimento Computacional, Galembeck, S. E.; Caramori, G. F. Química Nova 2003, 26, 957-959.